Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod.
نویسندگان
چکیده
The establishment of the digital rays and the interdigital spaces in the developing limb autopod is accompanied by the occurrence of corresponding domains of expression of TGF beta s and BMPs. This study analyzes whether these coincident events are functionally correlated. The experiments consisted of local administration of TGF beta-1, TGF beta-2 or BMP-4 by means of heparin or Affi-gel blue beads to the chick limb autopod in the stages preceding the onset of interdigital cell death. When beads bearing either TGF beta-1 or -2 were implanted in the interdigits, the mesodermal cells were diverted from the death program forming ectopic cartilages or extra digits in a dose- and stage-dependent fashion. This change in the interdigital phenotype was preceded by a precocious ectopic expression of ck-erg gene around the bead accompanied by down-regulation of bmp-4, msx-1 and msx-2 gene expression. When BMP-beads were implanted in the interdigital spaces, programmed cell death and the freeing of the digits were both accelerated. Implantation of beads bearing BMP-4 at the tip of the growing digits was followed by digit bifurcation, accompanied by the formation of an ectopic area of cell death resembling an extra interdigit, both morphologically and molecularly. The death-inducing effect of the BMP beads and the chondrogenic-inducing effect of the TGF beta beads were antagonized by the implantation of an additional bead preabsorbed with FGF-2, which constitutes a signal characteristic of the progress zone. It is concluded that the spatial distribution of digital rays and interdigital spaces might be controlled by a patterned distribution of TGF beta s and BMPs in the mesoderm subjacent to the progress zone.
منابع مشابه
The Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos
During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملTGF-β is required for programmed cell death in interdigital webs of the developing mouse limb
During limb formation massive cell death in the mesenchyme of the interdigital spaces accompanies the formation of free digits. Members of the transforming growth factor beta (TGF-) superfamily were discussed to play a key role in cell-cell interactions, important in the regulation of programmed cell death (PCD). TGF-beta itself is believed to be involved in epithelial-mesenchymal interactions....
متن کاملDev120279 672..680
Blood vessels serve as key regulators of organogenesis by providing oxygen, nutrients and molecular signals. During limb development, programmed cell death (PCD) contributes to separation of the digits. Interestingly, prior to the onset of PCD, the autopod vasculature undergoes extensive patterning that results in high interdigital vascularity. Here, we show that in mice, the limb vasculature p...
متن کاملDev120279 1..9
Blood vessels serve as key regulators of organogenesis by providing oxygen, nutrients and molecular signals. During limb development, programmed cell death (PCD) contributes to separation of the digits. Interestingly, prior to the onset of PCD, the autopod vasculature undergoes extensive patterning that results in high interdigital vascularity. Here, we show that in mice, the limb vasculature p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 122 8 شماره
صفحات -
تاریخ انتشار 1996